Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37177036

RESUMO

Over the past years, molybdenum disulfide (MoS2) has been the most extensively studied two-dimensional (2D) semiconductormaterial. With unique electrical and optical properties, 2DMoS2 is considered to be a promising candidate for future nanoscale electronic and optoelectronic devices. However, charge trapping leads to a persistent photoconductance (PPC), hindering its use for optoelectronic applications. To overcome these drawbacks and improve the optoelectronic performance, organic semiconductors (OSCs) are selected to passivate surface defects, tune the optical characteristics, and modify the doping polarity of 2D MoS2. Here, we demonstrate a fast photoresponse in multilayer (ML) MoS2 by addressing a heterojunction interface with vanadylphthalocyanine (VOPc) molecules. The MoS2/VOPc van der Waals interaction that has been established encourages the PPC effect in MoS2 by rapidly segregating photo-generated holes, which move away from the traps of MoS2 toward the VOPc molecules. The MoS2/VOPc phototransistor exhibits a fast photo response of less than 15 ms for decay and rise, which is enhanced by 3ordersof magnitude in comparison to that of a pristine MoS2-based phototransistor (seconds to tens of seconds). This work offers a means to realize high-performance transition metal dichalcogenide (TMD)-based photodetection with a fast response speed.

2.
Nanoscale ; 15(3): 1128-1135, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35726711

RESUMO

Understanding interactions between molecular transition and intense electromagnetic fields confined by plasmon nanostructures is of great significance due to their huge potential in fundamental cavity quantum electrodynamics and practical applications. Here, we report reorientable plasmon-enhanced fluorescence leveraging the flexibilities in densely-packed gold nanogap arrays by template-assisted depositions. By finely adjusting the symmetry of the unit structure, arrays of nanogaps along two nearly-orthogonal axes can be tailored collectively with spacing down to sub-10 nm on a single chip, facilitating distinct "inter-cell" and "intra-cell" plasmon couplings. Through engineering two sets of nanogaps, the varying hybridization-induced plasmonic bonding modes lead to adjustable splitting of the fluorescence emission peak with a width up to 81 nm and narrowing of linewidths up to a factor of 3. Besides, polarization anisotropy with a ratio up to 63% is obtained on the basis of spectrally separated local hotspots with discrepant oscillation directions. The developed plasmonic nanogap array is envisaged to provide a promising chip-scale, cost-effective platform for advancing fluorescence-based detection and emission technologies in both classical and quantum regimes.

3.
J Microbio Robot ; 19(1-2): 37-45, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38161388

RESUMO

Micro-and nanorobots have the potential to perform non-invasive drug delivery, sensing, and surgery in living organisms, with the aid of diverse medical imaging techniques. To perform such actions, microrobots require high spatiotemporal resolution tracking with real-time closed-loop feedback. To that end,  photoacoustic imaging has appeared as a promising technique for imaging microrobots in deep tissue with higher molecular specificity and contrast. Here, we present different strategies to track magnetically-driven micromotors with improved contrast and specificity using dedicated contrast agents (Au nanorods and nanostars). Furthermore, we discuss the possibility of improving the light absorption properties of the employed nanomaterials considering possible light scattering and coupling to the underlying metal-oxide layers on the micromotor's surface. For that, 2D COMSOL simulation and experimental results were correlated, confirming that an increased spacing between the Au-nanostructures and the increase of thickness of the underlying oxide layer lead to enhanced light absorption and preservation of the characteristic absorption peak. These characteristics are important when visualizing the micromotors in a complex in vivo environment, to distinguish them from the light absorption properties of the surrounding natural chromophores. Supplementary Information: The online version contains supplementary material available at 10.1007/s12213-023-00156-7.

4.
Sci Adv ; 8(51): eadd6596, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542707

RESUMO

Advancing the lithium-ion battery technology requires the understanding of electrochemical processes in electrode materials with high resolution, accuracy, and sensitivity. However, most techniques today are limited by their inability to separate the complex signals from slurry-coated composite electrodes. Here, we use a three-dimensional "Swiss-roll" microtubular electrode that is incorporated into a micrometer-sized lithium battery. This on-chip platform combines various in situ characterization techniques and precisely probes the intrinsic electrochemical properties of each active material due to the removal of unnecessary binders and additives. As an example, it helps elucidate the critical role of Fe substitution in a conversion-type NiO electrode by monitoring the evolution of Fe2O3 and solid electrolyte interphase layer. The markedly enhanced electrode performances are therefore explained. Our approach exposes a hitherto unexplored route to tracking the phase, morphology, and electrochemical evolution of electrodes in real time, allowing us to reveal information that is not accessible with bulk-level characterization techniques.

5.
ACS Nano ; 16(12): 20671-20679, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36420860

RESUMO

Two-dimensional (2D) perovskites have been proposed as materials capable of improving the stability and surpassing the radiative recombination efficiency of three-dimensional perovskites. However, their luminescent properties have often fallen short of what has been expected. In fact, despite attracting considerable attention for photonic applications during the last two decades, lasing in 2D perovskites remains unclear and under debate. Here, we were able to improve the optical gain properties of 2D perovskite and achieve optically pumped lasing. We show that the choice of the spacer cation affects the defectivity and photostability of the perovskite, which in turn influences its optical gain. Based on our synthetic strategy, we obtain PEA2SnI4 films with high crystallinity and favorable optical properties, resulting in amplified spontaneous emission (ASE) with a low threshold (30 µJ/cm2), a high optical gain above 4000 cm-1 at 77 K, and ASE operation up to room temperature.

6.
Nano Lett ; 22(16): 6692-6699, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35939782

RESUMO

We report the monolithic fabrication of twin microtube cavities by a nanomembrane origami method for achieving collective coupling of 3D confined optical modes. Owing to the well-aligned twin geometries, two sets of 3D confined optical modes in twin microtubes are spectrally and spatially matched, by which both the fundamental and higher-order axial modes are respectively coupled with each other. Multiple groups of the coupling modes provide multiple effective channels for energy exchange between coupled microcavities illustrated by the measured spatial optical field distributions. The spectral anticrossing and changing-over features of each group of coupled modes are revealed in experiments and calculations, indicating the occurrence of strong coupling. In addition, the simulated 3D mode profiles of twin microcavities confirm the collective strong coupling behavior, which shows good agreement with experiments. The collective coupling of 3D confined resonant modes promises broad applications in multichannel optical signal processing, nanophotonics, and 3D non-Hermitian systems.

7.
ACS Nano ; 16(2): 2921-2927, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35157444

RESUMO

MoS2 has drawn great attention as a promising alternative to Pt-based catalysts for the hydrogen evolution reaction (HER). However, it suffers from sluggish kinetics to drive the HER process because of inert basal planes. Here, an on-chip MoS2 monolayer (MoS2 ML) HER reactor was designed and fabricated to reveal direct thermal enhancement of MoS2 ML for the HER. The thermal effects generated efficient electron transfer in the atomic MoS2 ML and at the interface between the electrolyte and the catalyst, leading to enhanced HER activity. The MoS2 ML measured at a higher temperature (60 °C) possesses a significantly enhanced HER activity with a lower overpotential (90 mV at current densities of 10 mA cm-2), lower Tafel slope (94 mV dec-1), and higher turnover frequency (73 s-1 at an overpotential of 125 mV) compared to the results obtained at room temperature. More importantly, the findings are attractive toward understanding the thermal effect on 2D monolayers as well as the development of next-generation electrocatalysts.

8.
Anal Chem ; 94(2): 1046-1051, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34989240

RESUMO

We propose polarization-selective Raman measurement as a decent method for single-molecule surface-enhanced Raman scattering (SMSERS) verification. This approach features rapid acquisition of SMSERS events and appeals liberal requirements for analyte concentration. It is demonstrated as an efficient tool in sorting out dozens of SMSERS events from a large-scale plasmonic dimer array. In addition, it allows identification of a mixed SMSERS event containing two different individual molecules. In this article, the RPM method is employed to explore the underlying mechanisms of signal blinking, spectral wandering, and other unique characteristics in SMSERS. We observed synchronized blinking of different modes from one Rhodamine 6G (R6G) molecule, but a disagreement is found in a mixed SMSERS event containing one R6G molecule and one crystal violet molecule. Our approach offers a reliable means to interpret SMSERS events in statistical terms and facilitate the fundamental understanding of SMSERS.


Assuntos
Nanotecnologia , Análise Espectral Raman , Violeta Genciana , Polímeros , Análise Espectral Raman/métodos
9.
Angew Chem Int Ed Engl ; 61(13): e202115875, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35068052

RESUMO

Efficient radiative recombination is essential for perovskite luminescence, but the intrinsic radiative recombination rate as a basic material property is challenging to tailor. Here we report an interfacial chemistry strategy to dramatically increase the radiative recombination rate of perovskites. By coating aluminum oxide on the lead halide perovskite, lead-oxygen bonds are formed at the perovskite-oxide interface, producing the perovskite surface states with a large exciton binding energy and a high localized density of electronic state. The oxide-bonded perovskite exhibits a ≈500 fold enhanced photoluminescence with a ≈10 fold reduced lifetime, indicating an unprecedented ≈5000 fold increase in the radiative recombination rate. The enormously enhanced radiative recombination promises to significantly promote the perovskite optoelectronic performance.

11.
ACS Nano ; 15(11): 18411-18418, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34767356

RESUMO

We report the generation of multiple sets of 3D confined resonant modes in a single microtube cavity owing to nanogap induced resonant trajectory splits. The optical field largely overlaps in the split resonant trajectories, enabling strong optical coupling of 3D confined resonant light. The anticrossing feature and modes changing-over were demonstrated as direct evidence of strong coupling. In such an optical coupling system, the spatial optical field distribution of 3D coupling modes was experimentally mapped under the strong coupling regime, which allows direct observation of the energy transfer process between two hybrid states. Numerical calculations based on a quasi-potential model and the mode detuning process are in excellent agreement with the experimental results. The generation of multiple sets of 3D confined resonant modes and their efficient coupling in a single microcavity are of high interest for directional coupling with a higher degree of freedom to realize on-chip integration with elevated functionalities such as multiplexing, 3D lasing, and signal processing.

12.
Nanomicro Lett ; 13(1): 96, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-34138312

RESUMO

HIGHLIGHTS: A zero-reflection-induced phase singularity is achieved through precisely controlling the resonance characteristics using two-dimensional nanomaterials. An atomically thin nano-layer having a high absorption coefficient is exploited to enhance the zero-reflection dip, which has led to the subsequent phase singularity and thus a giant lateral position shift. We have improved the detection limit of low molecular weight molecules by more than three orders of magnitude compared to current state-of-art nanomaterial-enhanced plasmonic sensors. Detection of small cancer biomarkers with low molecular weight and a low concentration range has always been challenging yet urgent in many clinical applications such as diagnosing early-stage cancer, monitoring treatment and detecting relapse. Here, a highly enhanced plasmonic biosensor that can overcome this challenge is developed using atomically thin two-dimensional phase change nanomaterial. By precisely engineering the configuration with atomically thin materials, the phase singularity has been successfully achieved with a significantly enhanced lateral position shift effect. Based on our knowledge, it is the first experimental demonstration of a lateral position signal change > 340 µm at a sensing interface from all optical techniques. With this enhanced plasmonic effect, the detection limit has been experimentally demonstrated to be 10-15 mol L-1 for TNF-α cancer marker, which has been found in various human diseases including inflammatory diseases and different kinds of cancer. The as-reported novel integration of atomically thin Ge2Sb2Te5 with plasmonic substrate, which results in a phase singularity and thus a giant lateral position shift, enables the detection of cancer markers with low molecular weight at femtomolar level. These results will definitely hold promising potential in biomedical application and clinical diagnostics.

13.
Phys Rev Lett ; 126(21): 215302, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34114871

RESUMO

We employ electric circuit networks to study topological states of matter in non-Hermitian systems enriched by parity-time symmetry PT and chiral symmetry anti-PT (APT). The topological structure manifests itself in the complex admittance bands which yields excellent measurability and signal to noise ratio. We analyze the impact of PT-symmetric gain and loss on localized edge and defect states in a non-Hermitian Su-Schrieffer-Heeger (SSH) circuit. We realize all three symmetry phases of the system, including the APT-symmetric regime that occurs at large gain and loss. We measure the admittance spectrum and eigenstates for arbitrary boundary conditions, which allows us to resolve not only topological edge states, but also a novel PT-symmetric Z_{2} invariant of the bulk. We discover the distinct properties of topological edge states and defect states in the phase diagram. In the regime that is not PT symmetric, the topological defect state disappears and only reemerges when APT symmetry is reached, while the topological edge states always prevail and only experience a shift in eigenvalue. Our findings unveil a future route for topological defect engineering and tuning in non-Hermitian systems of arbitrary dimension.

14.
Small ; 17(24): e2101704, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33977641

RESUMO

Imperceptible electronics will make next-generation healthcare and biomedical systems thinner, lighter, and more flexible. While other components are thoroughly investigated, imperceptible energy storage devices lag behind because the decrease of thickness impairs the area-specific energy density. Imperceptible supercapacitors with high area-specific capacitance based on reduced graphene oxide/polyaniline (RGO/PANI) composite electrodes and polyvinyl alcohol (PVA)/H2 SO4 gel electrolyte are reported. Two strategies to realize a supercapacitor with a total device thickness of 5 µm-including substrate, electrode, and electrolyte-and an area-specific capacitance of 36 mF cm-2 simultaneously are implemented. First, the void volume of the RGO/PANI electrodes through mechanical compression is reduced, which decreases the thickness by 83% while retaining 89% of the capacitance. Second, the PVA-to-H2 SO4 mass ratio is decreased to 1:4.5, which improves the ion conductivity by 5000% compared to the commonly used PVA/H2 SO4 gel. Both advantages enable a 2 µm-thick gel electrolyte for planar interdigital supercapacitors. The impressive electromechanical stability of the imperceptible supercapacitors by wrinkling the substrate to produce folds with radii of 6 µm or less is demonstrated. The supercapacitors will be meaningful energy storage modules for future self-powered imperceptible electronics.


Assuntos
Eletrólitos , Álcool de Polivinil , Capacitância Elétrica , Condutividade Elétrica , Eletrodos
15.
ACS Appl Mater Interfaces ; 12(48): 54174-54180, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33205645

RESUMO

We propose and demonstrate a flexible surface-enhanced Raman scattering (SERS) chip as a versatile platform for femtomolar detection and real-time interfacial molecule analysis. The flexible SERS chip is composed of a flexible and transparent membrane and embedded plasmonic dimers with ultrahigh particle density and ultrasmall dimer gap. The chip enables rapid identification for residuals on solid substrates with irregular surfaces or dissolved analytes in aqueous solution. The sensitivity for liquid-state measurement is down to 0.06 molecule per dimers for 10-14 mol·L-1 Rhodamine 6G molecule without molecule enrichment. Strong signal fluctuation and blinking are observed at this concentration, indicating that the detection limit is close to the single-molecule level. Meanwhile, the homogeneous liquid environment facilities accurate SERS quantification of analytes with a wide dynamic range. The synergy of flexibility and liquid-state measurement opens up avenues for the real-time study of chemical reactions. The reduction from p-nitrothiophenol (PNTP) to p-aminothiophenol (PATP) in the absence of the chemical reducing agents is observed at liquid interfaces by in situ SERS measurements, and the plasmon-induced hot electron is demonstrated to drive the catalytic reaction. We believe this robust and feasible approach is promising in extending the SERS technique as a general method for identifying interfacial molecular traces, tracking the evolution of heterogeneous reactions, elucidating the reaction mechanisms, and evaluating the environmental effects such as pH value and salty ions in SERS.

16.
Opt Lett ; 45(20): 5720-5723, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33057267

RESUMO

We present tunable coupling between surface plasmon resonances supported by a metal-nanoparticle-coated tip and three-dimensionally (3D) confined optical modes supported by a microtube cavity. The competition and transition between two types of coupling mechanisms, i.e., dielectric-dielectric and plasmon-dielectric coupling, are observed in the tunable system. Owing to the competition between the two coupling mechanisms, the resonant modes can be dynamically tuned to first shift from higher to lower energies and then revert to higher energy. Moreover, the unique spatial field distribution of 3D confined modes allows selective coupling of odd and even order axial modes with surface plasmon resonances.

17.
ACS Nano ; 14(9): 11753-11764, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32877171

RESUMO

Sluggish conversion reactions severely impair the rate capability for lithium storage, which is the main disadvantage of the conversion-type anode materials. Here, the microplatform based on a single microelectrode is designed and utilized for the fundamental understanding of the conversion reaction. The kinetic-favorable layered structure of the anode material is on-site synthesized in the microplatform. The in situ characterization reveals that introducing an oxygen network distortion in the layered oxide anode effectively circumvents the severe passivation of the electrode material by lithium oxide, thus leading to highly reversible conversion reactions. As a result, the high-rate capability of the conversion-type anode materials is realized. The on-site synthesis strategy is further applied in the large-scale synthesis of nanomaterials for lithium-ion batteries. As such, oxide nanorods with the layered structure are synthesized by a facile chemical strategy, showing high rate performance (574 mAh g-1 at 10 A g-1). This work unveils the beneficial effect of oxygen network distortion in the layered anode for conversion reactions over cycling, thus providing an alternative strategy to enhance the rate capability of conversion-type anodes for lithium storage.

18.
Adv Mater ; 32(37): e2003252, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32686201

RESUMO

Mechanical strain formed at the interfaces of thin films has been widely applied to self-assemble 3D microarchitectures. Among them, rolled-up microtubes possess a unique 3D geometry beneficial for working as photonic, electromagnetic, energy storage, and sensing devices. However, the yield and quality of microtubular architectures are often limited by the wet-release of lithographically patterned stacks of thin-film structures. To address the drawbacks of conventionally used wet-etching methods in self-assembly techniques, here a dry-release approach is developed to roll-up both metallic and dielectric, as well as metallic/dielectric hybrid thin films for the fabrication of electronic and optical devices. A silicon thin film sacrificial layer on insulator is etched by dry fluorine chemistry, triggering self-assembly of prestrained nanomembranes in a well-controlled wafer scale fashion. More than 6000 integrated microcapacitors as well as hundreds of active microtubular optical cavities are obtained in a simultaneous self-assembly process. The fabrication of wafer-scale self-assembled microdevices results in high yield, reproducibility, uniformity, and performance, which promise broad applications in microelectronics, photonics, and opto-electronics.

19.
Sci Adv ; 5(10): eaax6973, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31692752

RESUMO

The dynamic characterization of water multilayers on oxide surfaces is hard to achieve by currently available techniques. Despite this, there is an increasing interest in the evolution of water nanostructures on oxides to fully understand the complex dynamics of ice nucleation and growth in natural and artificial environments. Here, we report the in situ detection of the dynamic evolution of nanoscale water layers on an amorphous oxide surface probed by optical resonances. In the water nanolayer growth process, we find an initial nanocluster morphology that turns into a planar layer beyond a critical thickness. In the reverse process, the planar water film converts to nanoclusters, accompanied by a transition from a planar amorphous layer to crystalline nanoclusters. Our results are explained by a simple thermodynamic model as well as kinetic considerations. Our work represents an approach to reveal the nanostructure and dynamics at the water-oxide interface using resonant light probing.

20.
Adv Mater ; 31(33): e1901263, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31243831

RESUMO

High-performance nanostructured electro-optical switches and logic gates are highly desirable as essential building blocks in integrated photonics. In contrast to silicon-based optoelectronic devices, with their inherent indirect optical bandgap, weak light-modulation mechanism, and sophisticated device configuration, direct-bandgap-semiconductor nanostructures with attractive electro-optical properties are promising candidates for the construction of nanoscale optical switches for on-chip photonic integrations. However, previously reported semiconductor-nanostructure optical switches suffer from serious drawbacks such as high drive voltage, limited operation spectral range, and low modulation depth. High-efficiency electro-optical switches based on single CdS nanobelts with low drive voltage, ultra-high on/off ratio, and broad operation wavelength range, properties resulting from unique electric-field-dependent phonon-assisted optical transitions, are demonstrated. Furthermore, functional NOT, NOR, and NAND optical logic gates are demonstrated based on these switches. These switches and optical logic gates represent an important step toward integrated photonic circuits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...